29.10.2014 Assembly Review - Developer Zone - National Instruments

INTERNET ARCHIVE http://zone.ni.com/devzone/cda/tut/p/id/5315

I"H!IHHE" "Iml]"u 21 captures

5 Nov 06 - 1 Jan 11 ||| miEl i 201

NATIONAL
INSTRUMENTS
Improve your ni.com experience. Login or Create a user profile.
SRR XTI Products & Services | Solutions | Support | NI Developer Zone | Academic | Events | Company |
| Developer Zone

LabVIEW Zone
& % & o T S5 &

LEARMIMNG CODE DIscUsZIoN USER STUDEMT LAEYIEW RESOURCES LAEYIEW
GEMTER ZHARIMG FORUM GROUFE CORMER CHAMFION = TOOLE METWORK

Assembly Review

In case you haven'tlooked at assembly before, and to orient you with the basics of this assembler's syntax, the following graphic shows
one instruction in annotated detail. The element to the left, the memory address, would normally be eight hex digits for a 32 bit processor,
but I've shortened it for readability. The Opcode mnemonics are pretty straightforward; mov= move, jmp= jump. The ones you might need
hints on are lea = load effective address (compute, but don't dereference the address), j? = conditional jump (je = jump equals, jg = jump
greater, etc.), and cmp = compare. Itis also very important to note that the destination is the first operand, on the left, and the source is the
second, on the right -- things don't make much sense if you get that wrong. For more detail on the Intel instruction set, see Reference for

Intel x86 Assembly.
Opcode - the action to perform, move in this case

Source - dword {four bytes) pointed to by contents of ebp minus 4

CTA mov ecx,dword ptr [ebp-4]
Memory Address, Destination - the ecx register, which means it is a four byte move

used mostly for jumping
to another location

LabVIEW and C Generated Code

The output of the disassembler is on the left. The right column contains annotations that will hopefully make the code more
understandable. The blue stripe to the left of the code highlights the loop body, where most of the execution will take place. I've timmed
the addresses to three digits to make it a bit easier to read.

LabVIEW Annotations

1DD mov dword ptr [ebp+2D8h],0 zero out the loop counter

1E7 mov esi,dword ptr [ebp+2EOQOh]

1ED mov eax.esi

1EF cmp eax,0

1F4 je 1FE check for empty array (encoded by NULL pointer)
1FA mov esi,dword ptr [esi] and determine how many times the loop will iterate
1FC mov eax,dword ptr [esi]

1FE mov ecx,eax

200 mov dword ptr [ebp+2DCh],ecx

206 mov esi,dword ptr [ebp+2EOh]

20C lea edi,[ebp+2ECh] Create temporary

212 cmp esi,0 pointer,

215 je 235 stride,

21B mov esi,dword ptr [esi] count

21D push eax block for each autoindexing input array
21E mov eax,dword pftr [esi] and initialize it

220 mov dword ptr [edi+4],eax

223 pop eax

224 mov dword ptr [edi+8],4
22B add esi/4
22E mov dword ptr [edi],esi
230 jmp 249
235 mov dword ptr [edi],4
https://web.archive.org/web/20110101230244/http://zone.ni.com/devzone/cda/tut/p/id/5315 1/3

29.10.2014 Assembly Review - Developer Zone - National Instruments

23B mov dword ptr [edi+4],0

242 mov dword ptr [edi+8],4

249 lea esi,[ebp+2ECh]

24F mov eax,dword ptr [esi] Adjust pointers for initial increment,

251 sub eax,dword ptr [esi+8] and check for empty array and possibly skip loop
254 mov dword ptr [esi],eax

256 lea ediebp+2D4h]

25C mov dword ptr [edi],eax

25E cmp dword ptr [ebp+2DCh],0

265 jg 270

26B jmp 2DD

270 lea esi,Jebp+2ECh]

276 mov eax,dword ptr [esi] Advance pointers used to access array elements
278 add eax,dword ptr [esi+8]

27B mov dword ptr [esi],eax

27D lea edi,[ebp+2D4h]

283 mov dword ptr [edi],eax

285 mov eax,dword ptr [ebp+2D4h]

28B mov eax,dword ptr [eax] check if array elementis zero

28D cmp eax,0

292 je 29D

298 jmp 2AE

29D mov eax,dword ptr [ebp+2DO0h]

2A3 add eax,1 Add one to value in shift register

2A8 mov dword ptr [ebp+2D0h],eax

2AE mov eax,dword ptr [ebp+68h] Check timer

2B1 cmp dword ptr [eax+18h],0 process Ul events

2B5 je 3AC (for Abort button, window moving, debugging, etc.)

2BB mov eax,dword ptr [ebp+2DCh]
2C1 mov ecx,dword ptr [ebp+2D8h]

2C7 add ecx,1 Increment loop counter

2CA cmp ecx,eax and test for last iteration

2CC jge 2DD

2D2 mov dword ptr [ebp+2D8h],ecx

2D8 jmp 270 *** END of LOOP

C Annotations

C7A mov ecx,dword ptr [ebp-4] store number of array elements into local

C7D mov edx,dword ptr [ecx]

C7F add edx4

C82 mov dword ptr [ebp-8],edx

C85 cmp dword ptr [ebp-4],0 if(arrayBlock && (arraySize= **(int32**)arrayBlock))
C89 je ccc

C8B mov eax,dword ptr [ebp-4]

C8E mov ecx,dword ptr [eax]

C90 mov edx,dword ptr [ecx]

C92 mov dword ptr [ebp-14h],edx
C95 cmp dword ptr [ebp-14h],0

C99 je cc

C9B mov dword ptr [ebp-10h],0 zero out loop count

CA2 jmp cad ptetest loop before beginning

CA4 mov eax,dword ptr [ebp-10h] for(i= 0; i < arraySize; i++) *** Beginning of LOOP

CA7 add eax,1

CAA mov dword ptr [ebp-10h],eax

CAD mov ecx,dword ptr [ebp-10h]

CBO0 cmp ecx,dword ptr [ebp-14h]

CB3 jge ccc

CB5 mov edx,dword ptr [ebp-10h] if(array[i] == 0)
CB8 mov eax,dword ptr [ebp-8]

CBB cmp dword ptr [eax+edx*4],0

CBF jne cca

CC1 mov ecx,dword ptr [ebp-0Ch] count ++;
CC4 add ecx,1

CC7 mov dword ptr [ebp-0Ch],ecx

CCA jmp ca4 *** END of LOOP

https://web.archive.org/web/20110101230244/http://zone.ni.com/devzone/cda/tut/p/id/5315

29.10.2014 Assembly Review - Developer Zone - National Instruments

CCC mov edx,dword ptr [ebp-0Ch] printf("Located %ld zeroes in array", count);
CCF push edx

CDO push offset string db8 push pointer to format string

CD5 push 0

CD7 push offsetrcsid b74

CDC movsx eax,word ptr bcc

CE3 add eax,0Dh

CE6 push eax

CE7 push offset_fileName_ (01f5eb50)
CEC lea ecx,[ebp-34h]

CEF call @ILT+106745

Figure 5. Disassembled Code from LabVIEW and C Compilers

Summary

I know that was a lot of information, but that is why higher level languages were invented -- to encode the operations in a form more
suitable to humans than CPUs. For those that are familiar with Intel assembly, you may notice that there are several areas where the
LabVIEW generated code could be improved, and rest assured, work is already underway to improve register usage. Even at the current
state, the body of the loop is just under twice the size of the C code, and thatis roughly what is expected.

The LabVIEW environment trades some efficiency of the computer for development power of the end user. As an example, the loop above
has code in it that tests a timer and periodically checks with the Ul to let you abort the VI or move and interact with the window in the
LabVIEW environment. Similarly, the LabVIEW array is a dynamically sized array. This means that before entering the loop certain things
need to be verified. Is there an array? Is it empty? If there are multiple input arrays and an input to the N of the loop, which is smallest?
These considerations add a bit to the execution of the VI, but they don't actually affect the inside of the loop, so in the larger scope as the
loop countincreases, these conveniences don't cost much. For reference, the typical instruction above will execute in about one or two
nanoseconds assuming itis in the cache.

Details
The LabVIEW VI above was compiled as a subroutine, which removes the generated code for debugging. As a regular priority VI with
debugging the code has an additional 37 instructions in the body of the for loop.

The C code was compiled in standard mode with symbols -- without optimization turned on. This was for ease in annotation and

understanding. With optimization, the code of the loop body shrank to six instructions but was much more difficult to annotate because the
optimizer rearranges the instructions.

E-Mail this

My Profile | RSS | Privacy | Legal | Contact NI © 2010 National Instruments Corporation. All rights reserved. |
Page

https://web.archive.org/web/20110101230244/http://zone.ni.com/devzone/cda/tut/p/id/5315

3/3

